

# **CERTIFICATE OF ACCREDITATION**

### **The ANSI National Accreditation Board**

Hereby attests that

### Raeyco Lab Equipment Systems Management Ltd. 4288 Lozells Avenue, Suite 205 Burnaby, BC V5A 0C7 Canada

Fulfills the requirements of

## **ISO/IEC 17025:2017**

In the field of

### CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.





R. Douglas Leonard Jr., VP, PILR SBU

Expiry Date: 14 January 2024 Certificate Number: AC-2834

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).



#### SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

#### Raeyco Lab Equipment Systems Management Ltd.

4288 Lozells Avenue, Suite 205 Burnaby, BC V5A 0C7 Bohee Kim 877-772-3926

#### CALIBRATION

Valid to: January 14, 2024

Certificate Number: AC-2834

#### Mass and Mass Related

| Parameter/Equipment                                                  | Range                                                                                                                                    | Expanded Uncertainty of<br>Measurement (+/-)                                                                                                                                                                                                                                                                                                                                              | Reference Standard,<br>Method, and/or<br>Equipment                  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Piston-operated Volumetric<br>Apparatus <sup>1,2</sup><br>(Pipettes) | (1 to 10) µL<br>(10 to 100) µL<br>(100 to 1 000) µL<br>(1 000 to 10 000) µL                                                              | 0.2% of reading + 0.018 μL<br>0.11 % of reading + 0.027 μL<br>0.058 % of reading + 0.082 μL<br>0.095 % of reading - 0.29 μL                                                                                                                                                                                                                                                               | Analytical Balance and<br>Gravimetric Method per<br>ISO 8655.       |
| Balances and Scales <sup>1,2</sup><br>(0.001 mg resolution)          | (1 to 10) mg<br>(10 to 100) mg<br>(100 to 1 000) mg<br>(1 to 10) g                                                                       | 19 μg<br>0.013 % of reading + 17 μg<br>0.003 7 % of reading + 29 μg<br>0.000 03 % of reading + 63 μg                                                                                                                                                                                                                                                                                      | ASTM E617/OIML R111<br>appropriate class weights                    |
| (0.1 mg resolution)<br>(5 mg resolution)                             | (10 to 100) g<br>(100 to 1 000) g<br>(1 to 10) kg<br>(10 to 25) kg                                                                       | 0.000 6 % of reading + 34 μg<br>0.000 1 % of reading + 0.5 mg<br>0.000 4 % of reading - 26 mg<br>4.3 % of reading - 0.43 kg                                                                                                                                                                                                                                                               | procedure utilized in<br>the calibration of the<br>weighing system. |
| Weights <sup>1</sup><br>(Mass Determination)                         | (1 to 10) mg<br>(10 to 100) mg<br>(100 to 1 000) mg<br>(1 to 10) g<br>(10 to 100) g<br>(100 to 1 000) g<br>(1 to 10) kg<br>(10 to 25) kg | $\begin{array}{c} 27 \ \mu g - 0.022 \ \% \ of \ reading \\ 0.019 \ \% \ of \ reading + 23 \ \mu g \\ 0.005 \ 2 \ \% \ of \ reading + 37 \ \mu g \\ 0.000 \ 5 \ \% \ of \ reading + 84 \ \mu g \\ 0.000 \ 8 \ \% \ of \ reading + 53 \ \mu g \\ 0.001 \ 6 \ \% \ of \ reading + 0.66 \ mg \\ 0.000 \ 6 \ \% \ of \ reading + 3.6 \ mg \\ 6.1 \ \% \ or \ reading - 0.61 \ kg \end{array}$ | Electronic Balance and<br>ASTM E617 / OIML R111<br>Class Weights    |



www.anab.org



#### Thermodynamic

| Parameter/Equipment                         | Range                                                                                   | Expanded Uncertainty of<br>Measurement (+/-)                                                                           | Reference Standard,<br>Method, and/or<br>Equipment |
|---------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Temperature – Measure <sup>1,2</sup>        | (-80 to 0) °C<br>(0 to 105) °C<br>(105 to 150) °C<br>(150 to 200) °C<br>(200 to 500) °C | 0.018 °C<br>0.018 °C<br>0.024 % of reading - 0.007 °C<br>0.02 % of reading - 0.001 °C<br>0.096 °C - 0.038 % of reading | Digital Thermometer<br>with PRT                    |
| Humidity –<br>Measure/Source <sup>1,2</sup> | (10 to 90) %RH                                                                          | 1.4 %RH                                                                                                                | Comparison to Master<br>Thermohygrometer           |

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. Raeyco Lab Equipment Systems Management maintains ISO 17025 qualified resident technicians in Toronto, ON, Hamilton, ON, London, ON, Winnipeg, MB, and Fredericton, NB.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-2834.



R. Douglas Leonard Jr., VP, PILR SBU

www.anab.org

Page 2 of 2